33 research outputs found

    Analysis, Design and Control of a Modular Full-Si Converter Concept for Electric Vehicle Ultra-Fast Charging

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Modulation Strategy Assessment for 3-Level Unidirectional Rectifiers in Electric Vehicle Ultra-Fast Charging Applications

    Get PDF
    This paper proposes a complete analysis and comparison of the most significant pulse-width modulation (PWM) strategies for unidirectional 3-level rectifiers. The basic operation of the converter is described and the stresses on the major passive components (i.e. DC-link capacitors, differential-mode inductors, common-mode chokes) are calculated, highlighting the general performance trade-off of each modulation strategy. This analysis is applied to a rectifier for electric vehicle (EV) ultra-fast charging connected to the European low-voltage grid (i.e. 50 Hz, 400 V line-to-line), adopting a 650 V DC-link. The best candidates concerning different performance metrics are identified and the most suitable strategy for EV battery charging is selected

    Optimal Design of Grid-Side LCL Filters for Electric Vehicle Ultra-Fast Battery Chargers

    Get PDF
    This paper proposes a complete design procedure for LCL filters intended for electric vehicle (EV) ultra-fast battery chargers. The basic modeling of LCL filters is reported and the optimal ratio between grid-side and converter-side inductance is discussed. The design methodology is based on the identification of all parameter constraints, which allow to graphically determine the filter design space. Once the available space is identified, the feasible design which minimizes the total required inductance is selected, since inductors dominate the overall LCL filter volume, loss and cost. The proposed design procedure is directly applied to a 50 kW, 20 kHz 3-level unidirectional rectifier for a modular EV ultra-fast charger. The performances of the selected design, in terms of harmonic filtering and current control dynamics, are verified by means of simulation in PLECS environment, proving the validity of the proposed design methodology

    Optimal Design of Grid-Side LCL Filters for Electric Vehicle Ultra-Fast Battery Chargers

    Get PDF
    This paper proposes a complete design procedure for LCL filters intended for electric vehicle (EV) ultra-fast battery chargers. The basic modeling of LCL filters is reported and the optimal ratio between grid-side and converter-side inductance is discussed. The design methodology is based on the identification of all parameter constraints, which allow to graphically determine the filter design space. Once the available space is identified, the feasible design which minimizes the total required inductance is selected, since inductors dominate the overall LCL filter volume, loss and cost. The proposed design procedure is directly applied to a 50 kW, 20 kHz 3-level unidirectional rectifier for a modular EV ultra-fast charger. The performances of the selected design, in terms of harmonic filtering and current control dynamics, are verified by means of simulation in PLECS environment, proving the validity of the proposed design methodology

    Design Space Optimization of a Three-Phase LCL Filter for Electric Vehicle Ultra-Fast Battery Charging

    Get PDF
    State-of-the-art ultra-fast battery chargers for electric vehicles simultaneously require high efficiency and high power density, leading to a challenging power converter design. In particular, the grid-side filter, which ensures sinusoidal current absorption with low pulse-width modulation (PWM) harmonic content, can be a major contributor to the overall converter size and losses. Therefore, this paper proposes a complete analysis, design and optimization procedure of a three-phase LCL filter for a modular DC fast charger. First, an overview of the basic LCL filter modeling is provided and the most significant system transfer functions are identified. Then, the optimal ratio between grid-side and converter-side inductance is discussed, aiming for the maximum filtering performance. A novel design methodology, based on a graphical representation of the filter design space, is thus proposed. Specifically, several constraints on the LCL filtering elements are enforced, such that all feasible design parameter combinations are identified. Therefore, since in low-voltage high-power applications the inductive components typically dominate the overall filter volume, loss and cost, the viable LCL filter design that minimizes the total required inductance is selected. The proposed design procedure is applied to a 30 kW, 20 kHz 3-level unidirectional rectifier, employed in a modular DC fast charger. The performance of the selected optimal design, featuring equal grid-side and converter-side 175 µH inductors and 15 µF capacitors, is verified experimentally on an active front-end prototype, both in terms of harmonic attenuation capability and current control dynamics. A current total harmonic distortion (THD) of 1.2% is achieved at full load and all generated current harmonics comply with the applicable harmonic standard. Moreover, separate tests are performed with different values of grid inner impedance, verifying the converter control stability in various operating conditions and supporting the general validity of the proposed design methodology

    Digital Multi-Loop Control of an LLC Resonant Converter for Electric Vehicle DC Fast Charging

    Get PDF
    This paper proposes a digital control strategy for LLC resonant converters, specifically intended for EV battery charging applications. Two cascaded control loops, i.e. an external battery voltage loop and an internal battery current loop, are designed and tuned according to analytically derived expressions. Particular attention is reserved to the output current control analysis, due to its extremely non-linear behaviour. The well known seventh-order LLC small-signal model, derived with the extended describing function (EDF) method, is simplified to an equivalent first-order model at the resonance frequency. In theseconditions,whichareproventobethemostunderdamped, the current control loop is tuned taking into account the delays introduced by the digital control implementation. Moreover, the adoption of a look-up table (LUT) in the feed-forward path is proposed to counteract the system non-linearities, ensuring high dynamical performance over the full frequency operating range. Finally, the proposed control strategy and controller design procedure are verified both in simulation and experimentally on a 15 kW LLC converter prototype

    Decoupled and Modular Torque Control of Multi-Three-Phase Induction Motor Drives

    Get PDF
    In recent years, the development of multi-three-phase drives for both energy production and transportation electrification has gained growing attention. An essential feature of the multi-three-phase drives is their modularity since they can be configured as three-phase units operating in parallel and with a modular control scheme. The so-called multi-stator modeling approach represents a suitable solution for the implementation of modular control strategies able to deal with several three-phase units. Nevertheless, the use of the multi-stator approach leads to relevant coupling terms in the resulting set of equations. To solve this issue, a new decoupling transformation for the decoupled torque control of multi-three-phase induction motor drives is proposed. The experimental validation has been carried out with a modular power converter feeding a 12-phase induction machine prototype (10 kW, 6000 r/min) using a quadruple three-phase stator winding configuration

    Iterative Design of a 60 kW All-Si Modular LLC Converter for Electric Vehicle Ultra-Fast Charging

    Get PDF
    This paper proposes an iterative design procedure for a high-power LLC resonant converter, taking part in a 60 kW modular DC/DC conversion stage for an electric vehicle (EV) ultra-fast battery charger. The basics of operation of the LLC converter are briefly recalled and the most relevant analytical expressions are reported. Due to the high-power requirement and the wide output battery voltage range (i.e. 250-1000 V), a modular design approach is adopted, leveraging the split input DC-link structure provided by a 3-level active front-end. A total of four modules, with at 15 kW nominal power and a 250-500 V output voltage regulation capability, are designed with a straightforward iterative procedure based on the first-harmonic approximation (FHA). Finally, the proposed methodology is verified experimentally on a 15 kW LLC converter prototype directly resulting from the design procedure

    Optimal Air Gap Length Design in Powder Core Inductors

    Get PDF
    The main requirements of magnetic components for power electronics applications are high power density and low power losses, driven by the need for more compact and more efficient power converters. Metal powder materials are a common choice for high-power and high-frequency inductors subject to a large magnetic field bias, since they feature high saturation flux density and low magnetic permeability (i.e., a “distributed” air gap), allowing for the adoption of un-gapped cores. Despite this, under high values of magnetomotive force (i.e., deep core magnetic saturation), the insertion of a concentrated air gap can lead to higher core inductance factor values with respect to an un-gapped configuration. In this context, this paper proposes a straightforward procedure to maximize the inductance factor of metal powder magnetic cores by identifying the optimal air gap length for a specified design operating point. In particular, the procedure completely relies on information available in the core manufacturer’s datasheet and does not require experimental characterization of the core itself, dramatically simplifying the inductor design procedure. The proposed methodology is theoretically described and then experimentally validated on an XFlux® 60 core from Magnetics

    Three-Level Unidirectional Rectifiers under Non-Unity Power Factor Operation and Unbalanced Split DC-Link Loading: Analytical and Experimental Assessment

    Get PDF
    Three-phase three-level unidirectional rectifiers are among the most adopted topologies for general active rectification, achieving an excellent compromise between cost, complexity and overall performance. The unidirectional nature of these rectifiers negatively affects their operation, e.g., distorting the input currents around the zero-crossings, limiting the maximum converter-side displacement power factor, reducing the split DC-link mid-point current capability and limiting the converter ability to compensate the low-frequency DC-link mid-point voltage oscillation. In particular, the rectifier operation under non-unity power factor and/or under constant zero-sequence voltage injection (i.e., when unbalanced split DC-link loading occurs) typically yields large and uncontrolled input current distortion, effectively limiting the acceptable operating region of the converter. Although high bandwidth current control loops and enhanced phase current sampling strategies may improve the rectifier input current distortion, especially at light load, these approaches lose effectiveness when significant phase-shift between voltage and current is required and/or a constant zero-sequence voltage must be injected. Therefore, this paper proposes a complete analysis and performance assessment of three-level unidirectional rectifiers under non-unity power factor operation and unbalanced split DC-link loading. First, the theoretical operating limits of the converter in terms of zero-sequence voltage, modulation index, power factor angle, maximum DC-link mid-point current and minimum DC-link mid-point charge ripple are derived. Leveraging the derived zero-sequence voltage limits, a unified carrier-based pulse-width modulation (PWM) approach enabling the undistorted operation of the rectifier in all feasible operating conditions is thus proposed. Moreover, novel analytical expressions defining the maximum rectifier mid-point current capability and the minimum peak-to-peak DC-link mid-point charge ripple as functions of both modulation index and power factor angle are derived, the latter enabling a straightforward sizing of the split DC-link capacitors. The theoretical analysis is verified on a 30 kW, 20 kHz T-type rectifier prototype, designed for electric vehicle ultra-fast battery charging. The input phase current distortion, the maximum mid-point current capability and the minimum mid-point charge ripple are experimentally assessed across all rectifier operating points, showing excellent performance and accurate agreement with the analytical predictions
    corecore